Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
AIDS ; 37(10): 1565-1571, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2327070

RESUMEN

BACKGROUND: Data supporting dementia as a risk factor for coronavirus disease 2019 (COVID-19) mortality relied on ICD-10 codes, yet nearly 40% of individuals with probable dementia lack a formal diagnosis. Dementia coding is not well established for people with HIV (PWH), and its reliance may affect risk assessment. METHODS: This retrospective cohort analysis of PWH with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR positivity includes comparisons to people without HIV (PWoH), matched by age, sex, race, and zipcode. Primary exposures were dementia diagnosis, by International Classification of Diseases (ICD)-10 codes, and cognitive concerns, defined as possible cognitive impairment up to 12 months before COVID-19 diagnosis after clinical review of notes from the electronic health record. Logistic regression models assessed the effect of dementia and cognitive concerns on odds of death [odds ratio (OR); 95% CI (95% confidence interval)]; models adjusted for VACS Index 2.0. RESULTS: Sixty-four PWH were identified out of 14 129 patients with SARS-CoV-2 infection and matched to 463 PWoH. Compared with PWoH, PWH had a higher prevalence of dementia (15.6% vs. 6%, P  = 0.01) and cognitive concerns (21.9% vs. 15.8%, P  = 0.04). Death was more frequent in PWH ( P  < 0.01). Adjusted for VACS Index 2.0, dementia [2.4 (1.0-5.8), P  = 0.05] and cognitive concerns [2.4 (1.1-5.3), P  = 0.03] were associated with increased odds of death. In PWH, the association between cognitive concern and death trended towards statistical significance [3.92 (0.81-20.19), P  = 0.09]; there was no association with dementia. CONCLUSION: Cognitive status assessments are important for care in COVID-19, especially among PWH. Larger studies should validate findings and determine long-term COVID-19 consequences in PWH with preexisting cognitive deficits.


Asunto(s)
COVID-19 , Demencia , Infecciones por VIH , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Prueba de COVID-19 , Estudios Retrospectivos , Infecciones por VIH/complicaciones , Factores de Riesgo , Cognición
2.
Semin Neurol ; 43(2): 195-204, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2282073

RESUMEN

Neuropathological findings have been published from ∼900 patients who died with or from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, representing less than 0.01% of the close to 6.4 million deaths reported to the World Health Organization 2 years into the coronavirus disease 2019 (COVID-19) pandemic. In this review, we extend our prior work summarizing COVID-19 neuropathology by including information on published autopsies up to June 2022, and neuropathological studies in children, COVID-19 variants, secondary brain infections, ex vivo brain imaging, and autopsies performed in countries outside of the United States or Europe. We also summarize research studies that investigate mechanisms of neuropathogenesis in nonhuman primates and other models. While a pattern of cerebrovascular pathology and microglial-predominant inflammation remains the primary COVID-19-associated neuropathological finding, there is no singular understanding of the mechanisms that underlie neurological symptoms in acute COVID-19 or the post-acute COVID-19 condition. Thus, it is paramount that we incorporate microscopic and molecular findings from brain tissue into what we know about the clinical disease so that we attain best practice guidance and direct research priorities for the study of the neurological morbidity of COVID-19.


Asunto(s)
Neoplasias Encefálicas , COVID-19 , Animales , Humanos , COVID-19/patología , SARS-CoV-2 , Autopsia , Encéfalo/patología , Neoplasias Encefálicas/patología
3.
J Neuropathol Exp Neurol ; 82(4): 283-295, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2274412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages). Coronavirus disease 2019 (COVID-19) has been associated with neurological sequelae including loss of taste/smell, headache, encephalopathy, and stroke, yet little is known about the impact of viral strain on neuropathogenesis. Detailed postmortem brain evaluations were performed for 22 patients from Massachusetts, including 12 who died following infection with Delta variant and 5 with Omicron variant, compared to 5 patients who died earlier in the pandemic. Diffuse hypoxic injury, occasional microinfarcts and hemorrhage, perivascular fibrinogen, and rare lymphocytes were observed across the 3 groups. SARS-CoV-2 protein and RNA were not detected in any brain samples by immunohistochemistry, in situ hybridization, or real-time quantitative PCR. These results, although preliminary, demonstrate that, among a subset of severely ill patients, similar neuropathological features are present in Delta, Omicron, and non-Delta/non-Omicron variant patients, suggesting that SARS-CoV-2 variants are likely to affect the brain by common neuropathogenic mechanisms.


Asunto(s)
COVID-19 , Accidente Cerebrovascular , Humanos , SARS-CoV-2 , Neuropatología
4.
Nat Commun ; 14(1): 574, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2221807

RESUMEN

SARS-CoV-2 distribution and circulation dynamics are not well understood due to challenges in assessing genomic data from tissue samples. We develop experimental and computational workflows for high-depth viral sequencing and high-resolution genomic analyses from formalin-fixed, paraffin-embedded tissues and apply them to 120 specimens from six subjects with fatal COVID-19. To varying degrees, viral RNA is present in extrapulmonary tissues from all subjects. The majority of the 180 viral variants identified within subjects are unique to individual tissue samples. We find more high-frequency (>10%) minor variants in subjects with a longer disease course, with one subject harboring ten such variants, exclusively in extrapulmonary tissues. One tissue-specific high-frequency variant was a nonsynonymous mutation in the furin-cleavage site of the spike protein. Our findings suggest adaptation and/or compartmentalized infection, illuminating the basis of extrapulmonary COVID-19 symptoms and potential for viral reservoirs, and have broad utility for investigating human pathogens.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Mutación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
Expert Syst Appl ; 2142023 Mar 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2095342

RESUMEN

Neurologic disability level at hospital discharge is an important outcome in many clinical research studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor intensive manual review of clinical notes in the electronic health record (EHR). To overcome this challenge, we set out to develop a natural language processing (NLP) approach that automatically reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger scale neurologic outcomes studies. We obtained 7314 notes from 3632 patients hospitalized at two large Boston hospitals between January 2012 and June 2020, including discharge summaries (3485), occupational therapy (1472) and physical therapy (2357) notes. Fourteen clinical experts reviewed notes to assign scores on the Glasgow Outcome Scale (GOS) with 4 classes, namely 'good recovery', 'moderate disability', 'severe disability', and 'death' and on the Modified Rankin Scale (mRS), with 7 classes, namely 'no symptoms', 'no significant disability', 'slight disability', 'moderate disability', 'moderately severe disability', 'severe disability', and 'death'. For 428 patients' notes, 2 experts scored the cases generating interrater reliability estimates for GOS and mRS. After preprocessing and extracting features from the notes, we trained a multiclass logistic regression model using LASSO regularization and 5-fold cross validation for hyperparameter tuning. The model performed well on the test set, achieving a micro average area under the receiver operating characteristic and F-score of 0.94 (95% CI 0.93-0.95) and 0.77 (0.75-0.80) for GOS, and 0.90 (0.89-0.91) and 0.59 (0.57-0.62) for mRS, respectively. Our work demonstrates that an NLP algorithm can accurately assign neurologic outcomes based on free text clinical notes. This algorithm increases the scale of research on neurological outcomes that is possible with EHR data.

6.
Vaccines (Basel) ; 10(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2081815

RESUMEN

Side effects of COVID-19 or other vaccinations may affect an individual's safety, ability to work or care for self or others, and/or willingness to be vaccinated. Identifying modifiable factors that influence these side effects may increase the number of people vaccinated. In this observational study, data were from individuals who received an mRNA COVID-19 vaccine between December 2020 and April 2021 and responded to at least one post-vaccination symptoms survey that was sent daily for three days after each vaccination. We excluded those with a COVID-19 diagnosis or positive SARS-CoV2 test within one week after their vaccination because of the overlap of symptoms. We used machine learning techniques to analyze the data after the first vaccination. Data from 50,484 individuals (73% female, 18 to 95 years old) were included in the primary analysis. Demographics, history of an epinephrine autoinjector prescription, allergy history category (e.g., food, vaccine, medication, insect sting, seasonal), prior COVID-19 diagnosis or positive test, and vaccine manufacturer were identified as factors associated with allergic and non-allergic side effects; vaccination time 6:00-10:59 was associated with more non-allergic side effects. Randomized controlled trials should be conducted to quantify the relative effect of modifiable factors, such as time of vaccination.

7.
Neurol Sci ; 43(12): 6627-6638, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2048314

RESUMEN

BACKGROUND: The autonomic nervous system (ANS) is a complex network where sympathetic and parasympathetic domains interact inside and outside of the network. Correlation-based network analysis (NA) is a novel approach enabling the quantification of these interactions. The aim of this study is to assess the applicability of NA to assess relationships between autonomic, sensory, respiratory, cerebrovascular, and inflammatory markers on post-acute sequela of COVID-19 (PASC) and postural tachycardia syndrome (POTS). METHODS: In this retrospective study, datasets from PASC (n = 15), POTS (n = 15), and matched controls (n = 11) were analyzed. Networks were constructed from surveys (autonomic and sensory), autonomic tests (deep breathing, Valsalva maneuver, tilt, and sudomotor test) results using heart rate, blood pressure, cerebral blood flow velocity (CBFv), capnography, skin biopsies for assessment of small fiber neuropathy (SFN), and various inflammatory markers. Networks were characterized by clusters and centrality metrics. RESULTS: Standard analysis showed widespread abnormalities including reduced orthostatic CBFv in 100%/88% (PASC/POTS), SFN 77%/88%, mild-to-moderate dysautonomia 100%/100%, hypocapnia 87%/100%, and elevated inflammatory markers. NA showed different signatures for both disorders with centrality metrics of vascular and inflammatory variables playing prominent roles in differentiating PASC from POTS. CONCLUSIONS: NA is suitable for a relationship analysis between autonomic and nonautonomic components. Our preliminary analyses indicate that NA can expand the value of autonomic testing and provide new insight into the functioning of the ANS and related systems in complex disease processes such as PASC and POTS.


Asunto(s)
COVID-19 , Síndrome de Taquicardia Postural Ortostática , Neuropatía de Fibras Pequeñas , Humanos , Síndrome de Taquicardia Postural Ortostática/complicaciones , Estudios Retrospectivos , COVID-19/complicaciones , Sistema Nervioso Autónomo , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología
8.
J Med Internet Res ; 24(8): e40384, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2009809

RESUMEN

BACKGROUND: Electronic health records (EHRs) with large sample sizes and rich information offer great potential for dementia research, but current methods of phenotyping cognitive status are not scalable. OBJECTIVE: The aim of this study was to evaluate whether natural language processing (NLP)-powered semiautomated annotation can improve the speed and interrater reliability of chart reviews for phenotyping cognitive status. METHODS: In this diagnostic study, we developed and evaluated a semiautomated NLP-powered annotation tool (NAT) to facilitate phenotyping of cognitive status. Clinical experts adjudicated the cognitive status of 627 patients at Mass General Brigham (MGB) health care, using NAT or traditional chart reviews. Patient charts contained EHR data from two data sets: (1) records from January 1, 2017, to December 31, 2018, for 100 Medicare beneficiaries from the MGB Accountable Care Organization and (2) records from 2 years prior to COVID-19 diagnosis to the date of COVID-19 diagnosis for 527 MGB patients. All EHR data from the relevant period were extracted; diagnosis codes, medications, and laboratory test values were processed and summarized; clinical notes were processed through an NLP pipeline; and a web tool was developed to present an integrated view of all data. Cognitive status was rated as cognitively normal, cognitively impaired, or undetermined. Assessment time and interrater agreement of NAT compared to manual chart reviews for cognitive status phenotyping was evaluated. RESULTS: NAT adjudication provided higher interrater agreement (Cohen κ=0.89 vs κ=0.80) and significant speed up (time difference mean 1.4, SD 1.3 minutes; P<.001; ratio median 2.2, min-max 0.4-20) over manual chart reviews. There was moderate agreement with manual chart reviews (Cohen κ=0.67). In the cases that exhibited disagreement with manual chart reviews, NAT adjudication was able to produce assessments that had broader clinical consensus due to its integrated view of highlighted relevant information and semiautomated NLP features. CONCLUSIONS: NAT adjudication improves the speed and interrater reliability for phenotyping cognitive status compared to manual chart reviews. This study underscores the potential of an NLP-based clinically adjudicated method to build large-scale dementia research cohorts from EHRs.


Asunto(s)
COVID-19 , Demencia , Anciano , Algoritmos , Prueba de COVID-19 , Cognición , Demencia/diagnóstico , Registros Electrónicos de Salud , Humanos , Medicare , Procesamiento de Lenguaje Natural , Reproducibilidad de los Resultados , Estados Unidos
9.
JMIR Form Res ; 6(6): e33834, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1910865

RESUMEN

BACKGROUND: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate. OBJECTIVE: We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes on the basis of unstructured clinical notes. METHODS: We collected 1.5 million notes from >10,000 patients from among 9 hospitals. Seven experts iteratively labeled 200,471 sentences. Using these, we trained three NLP classifiers: Support Vector Machine, Recurrent Neural Networks, and Transformer. Testing was performed using an external data set. We also evaluated associations with delirium billing (ICD) codes, medications, orders for restraints and sitters, direct assessments (Confusion Assessment Method [CAM] scores), and in-hospital mortality. F1 scores, confusion matrices, and areas under the receiver operating characteristic curve (AUCs) were used to compare NLP models. We used the φ coefficient to measure associations with other delirium indicators. RESULTS: The transformer NLP performed best on the following parameters: micro F1=0.978, macro F1=0.918, positive AUC=0.984, and negative AUC=0.992. NLP detections exhibited higher correlations (φ) than ICD codes with deliriogenic medications (0.194 vs 0.073 for ICD codes), restraints and sitter orders (0.358 vs 0.177), mortality (0.216 vs 0.000), and CAM scores (0.256 vs -0.028). CONCLUSIONS: Clinical notes are an attractive alternative to ICD codes for EHR delirium studies but require automated methods. Our NLP model detects delirium with high accuracy, similar to manual chart review. Our NLP approach can provide more accurate determination of delirium for large-scale EHR-based studies regarding delirium, quality improvement, and clinical trails.

10.
Ann Neurol ; 91(6): 740-755, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1729093

RESUMEN

OBJECTIVE: The purpose of this study was to estimate the time to recovery of command-following and associations between hypoxemia with time to recovery of command-following. METHODS: In this multicenter, retrospective, cohort study during the initial surge of the United States' pandemic (March-July 2020) we estimate the time from intubation to recovery of command-following, using Kaplan Meier cumulative-incidence curves and Cox proportional hazard models. Patients were included if they were admitted to 1 of 3 hospitals because of severe coronavirus disease 2019 (COVID-19), required endotracheal intubation for at least 7 days, and experienced impairment of consciousness (Glasgow Coma Scale motor score <6). RESULTS: Five hundred seventy-one patients of the 795 patients recovered command-following. The median time to recovery of command-following was 30 days (95% confidence interval [CI] = 27-32 days). Median time to recovery of command-following increased by 16 days for patients with at least one episode of an arterial partial pressure of oxygen (PaO2 ) value ≤55 mmHg (p < 0.001), and 25% recovered ≥10 days after cessation of mechanical ventilation. The time to recovery of command-following  was associated with hypoxemia (PaO2 ≤55 mmHg hazard ratio [HR] = 0.56, 95% CI = 0.46-0.68; PaO2 ≤70 HR = 0.88, 95% CI = 0.85-0.91), and each additional day of hypoxemia decreased the likelihood of recovery, accounting for confounders including sedation. These findings were confirmed among patients without any imagining evidence of structural brain injury (n = 199), and in a non-overlapping second surge cohort (N = 427, October 2020 to April 2021). INTERPRETATION: Survivors of severe COVID-19 commonly recover consciousness weeks after cessation of mechanical ventilation. Long recovery periods are associated with more severe hypoxemia. This relationship is not explained by sedation or brain injury identified on clinical imaging and should inform decisions about life-sustaining therapies. ANN NEUROL 2022;91:740-755.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Lesiones Encefálicas/complicaciones , COVID-19/complicaciones , Estudios de Cohortes , Humanos , Hipoxia , Estudios Retrospectivos , Inconsciencia/complicaciones
11.
J Neuroophthalmol ; 42(2): 163-172, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1700156

RESUMEN

BACKGROUND: The literature on neurological manifestations, cerebrospinal fluid analyses, and autopsies in patients with COVID-19 continues to grow. The proposed mechanisms for neurological disease in patients with COVID-19 include indirect processes such as inflammation, microvascular injury, and hypoxic-ischemic damage. An alternate hypothesis suggests direct viral entry of SARS-CoV-2 into the brain and cerebrospinal fluid, given varying reports regarding isolation of viral components from these anatomical sites. EVIDENCE ACQUISITION: PubMed, Google Scholar databases, and neuroanatomical textbooks were manually searched and reviewed. RESULTS: We provide clinical concepts regarding the mechanisms of viral pathogen invasion in the central nervous system (CNS); advances in our mechanistic understanding of CNS invasion in well-known neurotropic pathogens can aid in understanding how viruses evolve strategies to enter brain parenchyma. We also present the structural components of CNS compartments that influence viral entry, focusing on hematogenous and transneuronal spread, and discuss this evidence as it relates to our understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSIONS: Although there is a paucity of data supporting direct viral entry of SARS-CoV-2 in humans, increasing our knowledge of the structural components of CNS compartments that block viral entry and pathways exploited by pathogens is fundamental to preparing clinicians and researchers for what to expect when a novel emerging virus with neurological symptoms establishes infection in the CNS, and how to design therapeutics to mitigate such an infection.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Encéfalo , Sistema Nervioso Central , Humanos , SARS-CoV-2
12.
Ann Neurol ; 91(3): 367-379, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1636023

RESUMEN

OBJECTIVE: The purpose of this study was to describe cerebrovascular, neuropathic, and autonomic features of post-acute sequelae of coronavirus disease 2019 ((COVID-19) PASC). METHODS: This retrospective study evaluated consecutive patients with chronic fatigue, brain fog, and orthostatic intolerance consistent with PASC. Controls included patients with postural tachycardia syndrome (POTS) and healthy participants. Analyzed data included surveys and autonomic (Valsalva maneuver, deep breathing, sudomotor, and tilt tests), cerebrovascular (cerebral blood flow velocity [CBFv] monitoring in middle cerebral artery), respiratory (capnography monitoring), and neuropathic (skin biopsies for assessment of small fiber neuropathy) testing and inflammatory/autoimmune markers. RESULTS: Nine patients with PASC were evaluated 0.8 ± 0.3 years after a mild COVID-19 infection, and were treated as home observations. Autonomic, pain, brain fog, fatigue, and dyspnea surveys were abnormal in PASC and POTS (n = 10), compared with controls (n = 15). Tilt table test reproduced the majority of PASC symptoms. Orthostatic CBFv declined in PASC (-20.0 ± 13.4%) and POTS (-20.3 ± 15.1%), compared with controls (-3.0 ± 7.5%, p = 0.001) and was independent of end-tidal carbon dioxide in PASC, but caused by hyperventilation in POTS. Reduced orthostatic CBFv in PASC included both subjects without (n = 6) and with (n = 3) orthostatic tachycardia. Dysautonomia was frequent (100% in both PASC and POTS) but was milder in PASC (p = 0.002). PASC and POTS cohorts diverged in frequency of small fiber neuropathy (89% vs 60%) but not in inflammatory markers (67% vs 70%). Supine and orthostatic hypocapnia was observed in PASC. INTERPRETATION: PASC following mild COVID-19 infection is associated with multisystem involvement including: (1) cerebrovascular dysregulation with persistent cerebral arteriolar vasoconstriction; (2) small fiber neuropathy and related dysautonomia; (3) respiratory dysregulation; and (4) chronic inflammation. ANN NEUROL 2022;91:367-379.


Asunto(s)
Presión Sanguínea/fisiología , COVID-19/complicaciones , Circulación Cerebrovascular/fisiología , Frecuencia Cardíaca/fisiología , Mediadores de Inflamación/sangre , Adulto , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/fisiopatología , Fatiga/sangre , Fatiga/diagnóstico , Fatiga/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intolerancia Ortostática/sangre , Intolerancia Ortostática/diagnóstico , Intolerancia Ortostática/fisiopatología , Estudios Retrospectivos , Síndrome Post Agudo de COVID-19
13.
Nat Med ; 28(1): 20-23, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1636011

Asunto(s)
Indio Americano o Nativo de Alaska , Negro o Afroamericano , COVID-19/complicaciones , COVID-19/etnología , Hispánicos o Latinos , Enfermedades del Sistema Nervioso/etnología , Anosmia/epidemiología , Anosmia/etnología , Anosmia/fisiopatología , Enfermedades del Sistema Nervioso Autónomo/epidemiología , Enfermedades del Sistema Nervioso Autónomo/etnología , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , COVID-19/epidemiología , COVID-19/fisiopatología , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etnología , Disfunción Cognitiva/fisiopatología , Disgeusia/epidemiología , Disgeusia/etnología , Disgeusia/fisiopatología , Cefalea/epidemiología , Cefalea/etnología , Cefalea/fisiopatología , Disparidades en el Estado de Salud , Humanos , Trastornos de la Memoria/epidemiología , Trastornos de la Memoria/etnología , Trastornos de la Memoria/fisiopatología , Debilidad Muscular/epidemiología , Debilidad Muscular/etnología , Debilidad Muscular/fisiopatología , Enfermedades Musculares/epidemiología , Enfermedades Musculares/etnología , Enfermedades Musculares/fisiopatología , Mialgia/epidemiología , Mialgia/etnología , Mialgia/fisiopatología , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso Periférico/epidemiología , Enfermedades del Sistema Nervioso Periférico/etnología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etnología , Accidente Cerebrovascular/fisiopatología , Estados Unidos/epidemiología , Síndrome Post Agudo de COVID-19
14.
Neurology ; 97(8): e849-e858, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1261289

RESUMEN

OBJECTIVE: To explore the spectrum of skeletal muscle and nerve pathology of patients who died after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to assess for direct viral invasion of these tissues. METHODS: Psoas muscle and femoral nerve sampled from 35 consecutive autopsies of patients who died after SARS-CoV-2 infection and 10 SARS-CoV-2-negative controls were examined under light microscopy. Clinical and laboratory data were obtained by chart review. RESULTS: In SARS-CoV-2-positive patients, mean age at death was 67.8 years (range 43-96 years), and the duration of symptom onset to death ranged from 1 to 49 days. Four patients had neuromuscular symptoms. Peak creatine kinase was elevated in 74% (mean 959 U/L, range 29-8,413 U/L). Muscle showed type 2 atrophy in 32 patients, necrotizing myopathy in 9, and myositis in 7. Neuritis was seen in 9. Major histocompatibility complex-1 (MHC-1) expression was observed in all cases of necrotizing myopathy and myositis and in 8 additional patients. Abnormal expression of myxovirus resistance protein A (MxA) was present on capillaries in muscle in 9 patients and in nerve in 7 patients. SARS-CoV-2 immunohistochemistry was negative in muscle and nerve in all patients. In the 10 controls, muscle showed type 2 atrophy in all patients, necrotic muscle fibers in 1, MHC-1 expression in nonnecrotic/nonregenerating fibers in 3, MxA expression on capillaries in 2, and inflammatory cells in none, and nerves showed no inflammatory cells or MxA expression. CONCLUSIONS: Muscle and nerve tissue demonstrated inflammatory/immune-mediated damage likely related to release of cytokines. There was no evidence of direct SARS-CoV-2 invasion of these tissues. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that muscle and nerve biopsies document a variety of pathologic changes in patients dying of coronavirus disease 2019 (COVID-19).


Asunto(s)
COVID-19/patología , Músculo Esquelético/patología , Nervios Periféricos/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , COVID-19/inmunología , COVID-19/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/inmunología , Músculo Esquelético/virología , Nervios Periféricos/inmunología , Nervios Periféricos/virología
15.
Front Neurol ; 12: 642912, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1202073

RESUMEN

Objectives: Patients with comorbidities are at increased risk for poor outcomes in COVID-19, yet data on patients with prior neurological disease remains limited. Our objective was to determine the odds of critical illness and duration of mechanical ventilation in patients with prior cerebrovascular disease and COVID-19. Methods: A observational study of 1,128 consecutive adult patients admitted to an academic center in Boston, Massachusetts, and diagnosed with laboratory-confirmed COVID-19. We tested the association between prior cerebrovascular disease and critical illness, defined as mechanical ventilation (MV) or death by day 28, using logistic regression with inverse probability weighting of the propensity score. Among intubated patients, we estimated the cumulative incidence of successful extubation without death over 45 days using competing risk analysis. Results: Of the 1,128 adults with COVID-19, 350 (36%) were critically ill by day 28. The median age of patients was 59 years (SD: 18 years) and 640 (57%) were men. As of June 2nd, 2020, 127 (11%) patients had died. A total of 177 patients (16%) had a prior cerebrovascular disease. Prior cerebrovascular disease was significantly associated with critical illness (OR = 1.54, 95% CI = 1.14-2.07), lower rate of successful extubation (cause-specific HR = 0.57, 95% CI = 0.33-0.98), and increased duration of intubation (restricted mean time difference = 4.02 days, 95% CI = 0.34-10.92) compared to patients without cerebrovascular disease. Interpretation: Prior cerebrovascular disease adversely affects COVID-19 outcomes in hospitalized patients. Further study is required to determine if this subpopulation requires closer monitoring for disease progression during COVID-19.

16.
Ann Neurol ; 89(5): 872-883, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1148790

RESUMEN

OBJECTIVE: The aim was to determine the prevalence and risk factors for electrographic seizures and other electroencephalographic (EEG) patterns in patients with Coronavirus disease 2019 (COVID-19) undergoing clinically indicated continuous electroencephalogram (cEEG) monitoring and to assess whether EEG findings are associated with outcomes. METHODS: We identified 197 patients with COVID-19 referred for cEEG at 9 participating centers. Medical records and EEG reports were reviewed retrospectively to determine the incidence of and clinical risk factors for seizures and other epileptiform patterns. Multivariate Cox proportional hazards analysis assessed the relationship between EEG patterns and clinical outcomes. RESULTS: Electrographic seizures were detected in 19 (9.6%) patients, including nonconvulsive status epilepticus (NCSE) in 11 (5.6%). Epileptiform abnormalities (either ictal or interictal) were present in 96 (48.7%). Preceding clinical seizures during hospitalization were associated with both electrographic seizures (36.4% in those with vs 8.1% in those without prior clinical seizures, odds ratio [OR] 6.51, p = 0.01) and NCSE (27.3% vs 4.3%, OR 8.34, p = 0.01). A pre-existing intracranial lesion on neuroimaging was associated with NCSE (14.3% vs 3.7%; OR 4.33, p = 0.02). In multivariate analysis of outcomes, electrographic seizures were an independent predictor of in-hospital mortality (hazard ratio [HR] 4.07 [1.44-11.51], p < 0.01). In competing risks analysis, hospital length of stay increased in the presence of NCSE (30 day proportion discharged with vs without NCSE: HR 0.21 [0.03-0.33] vs 0.43 [0.36-0.49]). INTERPRETATION: This multicenter retrospective cohort study demonstrates that seizures and other epileptiform abnormalities are common in patients with COVID-19 undergoing clinically indicated cEEG and are associated with adverse clinical outcomes. ANN NEUROL 2021;89:872-883.


Asunto(s)
COVID-19/epidemiología , COVID-19/fisiopatología , Electroencefalografía/tendencias , Convulsiones/epidemiología , Convulsiones/fisiopatología , Anciano , COVID-19/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Convulsiones/diagnóstico , Resultado del Tratamiento
17.
Front Neurol ; 12: 634827, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1127991

RESUMEN

The World Health Organization (WHO) monitors the spread of diseases globally and maintains a list of diseases with epidemic or pandemic potential. Currently listed diseases include Chikungunya, cholera, Crimean-Congo hemorrhagic fever, Ebola virus disease, Hendra virus infection, influenza, Lassa fever, Marburg virus disease, Neisseria meningitis, MERS-CoV, monkeypox, Nipah virus infection, novel coronavirus (COVID-19), plague, Rift Valley fever, SARS, smallpox, tularemia, yellow fever, and Zika virus disease. The associated pathogens are increasingly important on the global stage. The majority of these diseases have neurological manifestations. Those with less frequent neurological manifestations may also have important consequences. This is highlighted now in particular through the ongoing COVID-19 pandemic and reinforces that pathogens with the potential to spread rapidly and widely, in spite of concerted global efforts, may affect the nervous system. We searched the scientific literature, dating from 1934 to August 2020, to compile data on the cause, epidemiology, clinical presentation, neuroimaging features, and treatment of each of the diseases of epidemic or pandemic potential as viewed through a neurologist's lens. We included articles with an abstract or full text in English in this topical and scoping review. Diseases with epidemic and pandemic potential can be spread directly from human to human, animal to human, via mosquitoes or other insects, or via environmental contamination. Manifestations include central neurologic conditions (meningitis, encephalitis, intraparenchymal hemorrhage, seizures), peripheral and cranial nerve syndromes (sensory neuropathy, sensorineural hearing loss, ophthalmoplegia), post-infectious syndromes (acute inflammatory polyneuropathy), and congenital syndromes (fetal microcephaly), among others. Some diseases have not been well-characterized from a neurological standpoint, but all have at least scattered case reports of neurological features. Some of the diseases have curative treatments available while in other cases, supportive care remains the only management option. Regardless of the pathogen, prompt, and aggressive measures to control the spread of these agents are the most important factors in lowering the overall morbidity and mortality they can cause.

18.
J Infect Dis ; 223(1): 38-46, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1066343

RESUMEN

BACKGROUND: We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care. METHODS: We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, 7 March-2 May) and prospective (n = 2205, 3-14 May) cohorts. Outcomes were hospitalization, critical illness (intensive care unit or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio (E/O). Discrimination was assessed by area under the receiver operating curve (AUC). RESULTS: In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, respectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio [E/O]: 1.01; AUC: 0.76), for critical illness (E/O: 1.03; AUC: 0.79), and for death (E/O: 1.63; AUC: 0.93). Among 30 predictors, the top 5 were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate. CONCLUSIONS: CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to COVID-19 infection.


Asunto(s)
COVID-19/diagnóstico , Índice de Severidad de la Enfermedad , Adulto , Anciano , Enfermedad Crítica , Femenino , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Pacientes Ambulatorios , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Curva ROC , Sensibilidad y Especificidad
19.
J Neurol Sci ; 421: 117308, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1033825

RESUMEN

We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , COVID-19/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Microvasos/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Lesiones Encefálicas/etiología , COVID-19/complicaciones , Humanos , Unidades de Cuidados Intensivos/tendencias , Masculino , Microvasos/lesiones , Persona de Mediana Edad , Estudios Retrospectivos
20.
JMIR Med Inform ; 9(2): e25457, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1032549

RESUMEN

BACKGROUND: Medical notes are a rich source of patient data; however, the nature of unstructured text has largely precluded the use of these data for large retrospective analyses. Transforming clinical text into structured data can enable large-scale research studies with electronic health records (EHR) data. Natural language processing (NLP) can be used for text information retrieval, reducing the need for labor-intensive chart review. Here we present an application of NLP to large-scale analysis of medical records at 2 large hospitals for patients hospitalized with COVID-19. OBJECTIVE: Our study goal was to develop an NLP pipeline to classify the discharge disposition (home, inpatient rehabilitation, skilled nursing inpatient facility [SNIF], and death) of patients hospitalized with COVID-19 based on hospital discharge summary notes. METHODS: Text mining and feature engineering were applied to unstructured text from hospital discharge summaries. The study included patients with COVID-19 discharged from 2 hospitals in the Boston, Massachusetts area (Massachusetts General Hospital and Brigham and Women's Hospital) between March 10, 2020, and June 30, 2020. The data were divided into a training set (70%) and hold-out test set (30%). Discharge summaries were represented as bags-of-words consisting of single words (unigrams), bigrams, and trigrams. The number of features was reduced during training by excluding n-grams that occurred in fewer than 10% of discharge summaries, and further reduced using least absolute shrinkage and selection operator (LASSO) regularization while training a multiclass logistic regression model. Model performance was evaluated using the hold-out test set. RESULTS: The study cohort included 1737 adult patients (median age 61 [SD 18] years; 55% men; 45% White and 16% Black; 14% nonsurvivors and 61% discharged home). The model selected 179 from a vocabulary of 1056 engineered features, consisting of combinations of unigrams, bigrams, and trigrams. The top features contributing most to the classification by the model (for each outcome) were the following: "appointments specialty," "home health," and "home care" (home); "intubate" and "ARDS" (inpatient rehabilitation); "service" (SNIF); "brief assessment" and "covid" (death). The model achieved a micro-average area under the receiver operating characteristic curve value of 0.98 (95% CI 0.97-0.98) and average precision of 0.81 (95% CI 0.75-0.84) in the testing set for prediction of discharge disposition. CONCLUSIONS: A supervised learning-based NLP approach is able to classify the discharge disposition of patients hospitalized with COVID-19. This approach has the potential to accelerate and increase the scale of research on patients' discharge disposition that is possible with EHR data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA